Heqget Tutorial

By Isaac Reilly
advised by Donya Quick

senior project for the Yale University major in Computer Science

fall 2015

Contents

11 Heqet for Euterpea Users|

12 Heqet for Lilypond Users|
2.1 Noteinput|.
2.2 Difterences from Lilypond input|f.

|3 More processing|

4 Making your own note type|

1 Heqet for Euterpea Users

Given a Euterpea music expression, creating a score is straightforward. You
will need to import Heqet and Heget.Input.Euterpea and then apply the
following functions: First, to convert it to a Heqet music value, you should
use fromEu or fromEul, which take a Euterpea Music Pitch or a Music Notel
respectively. Now you can print a score to stdout with the functions quickScore
or quickLine. quickScore produces a piano rendition, while quickLine writes
a single staff.

The reason that these functions perform IO is that the simplest way to use
Heqet is to write a Haskell program which outputs your Lilypond code and pipe
it directly into Lilypond, which you can do by running the included heqet.sh
bash script with your Haskell program filename as an argument. Alternatively,
just load your program into GHCi and paste the output code into a Lilypond
file.

Now, let’s try something more complicated. Suppose you have a score that
has multiple instruments and you want to write them on separate staves with
appropriate labels. If your Euterpea music value has instrument modifiers, you
can just use writeScore for your output function, since Euterpea instruments
are converted automatically. If you don’t have instrument modifiers, or if your
instruments are beyond the basic set of instruments currently recognized, you’ll
have to assign instruments in Heqet. The tools to manipulate music are mostly
lenses, best used with the Control.Lens package. Lenses and other “optics”
are a way to modify portions of a larger piece of data, for example, changing
the instrument assigned to some of the notes of a music value.

By the way, this is a good time to mention that in Heqet most properties of
music are recorded on every single note they impact. So, every note has a field
for its Maybe Instrument. This way, you can rearrange the music as much as
you want without worrying about handling the transitions between states over
the course of the music—if the instrument changes, then Heqet is supposed to
automatically write this direction into the part.(Actually, this isn’t implemented
yet. An example that does work is handling slurs: a slurred is considered to be
an articulation on all but the last note in the slur. If you cut a slurred phrase
in half, both halves will stay slurred correctly.)

Suppose we have a Heqet music value opus. Let’s make it played by an oboe:

opusWithInstruments = opus & traverse.val.inst .~ Just oboe

Quick explanation of these operators: traverse.val.inst .~ Just oboe
is a function that can manipulate some music. &is a fliped $. So we’re applying
this function to opus. In the middle is the “optic”, or in this case a composition
of three: traverse, val, and inst. traverse looks at every note in the music,
inst looks at the instrument of a note, and val is an implementation detail
that will be hidden in future versions of Heqet. The .~ operator means to set
the value revealed by the optic, in this case setting the instrument field of every
note to be Just oboe.

Suppose that all but one instrument was recognized automatically. Then,
we could set all the notes with an unknown instrument to be an oboe like this:

opusWithInstruments = opus
& instKind "Unknown".traverse.val.inst .~ Just oboe

instKind is a function that takes a string and produces a lens that looks
at notes which have an instrument of that kind. The unknown instrument is a
real instrument, not just a value of Nothing in the instrument field, because we
need to know how to write its name in a score, what clefs it uses, what range it
has (unlimited), etc.

If you try these examples, you might notice a problem: all the music is still
on one staff! That’s because staff assignments are separate from instrument
assignments. To assign a staff of "3" (yes, that’s a string) to the Bari Sax, we
write:

opusWithInstruments = opus
& instKind "Bari Sax".traverse.val.line .~ Just "3"

Heqet provides lenses to select music by start and end time or by any pred-
icate on a single note.

To output a score with correct note durations, you need to assign a meter.
The meter is one of the rare musical properties that is not stored in the notes
themselves. Rather, a meter is a set of notes which, instead of having pitches,
have measure and beat events. Assigning a meter to a segment of music simply
means inserting these notes, which can have a staff just like any other note.
These events can be sliced and moved around with their music, and Heqet will
analyze them to determine what meter they specify and where meter changes
need to be inserted into the printed score. To make a piece of music in common
time, write:

opusWithInstruments = opus
& assignMeter m4_4

Even though assignMeter m4_4 does not use a lens, I find it natural to apply
it with &, since often I want to take a music value and apply many functions to
it, writing each function on a separate line beginning with the &.

(note: meter rendering has developed a bug which I don’t have time to fix as
I have stopped coding to write up my report and tutorial. Meters now simply
don’t appear in the rendered code.)

If you want the string output by writeScore, you can use allRendering
instead, but I don’t expect this to be a common need.

2 Heqet for Lilypond Users

So you want to do some fancy computer processing of your music, but you’re not
hot about Scheme, or at least are frustrated with the limited tools for working
with Lilypond music data? You've come to the right place! However, this
tutorial will not teach Haskell.

2.1 Note input

In order to enter music into Haskell source code using the Heqget DSL, you
need to enable the “quasi-quoting” optional language feature by either putting
{-# LANGUAGE QuasiQuotes #-1} at the top of your source file or by typing
:set -XQuasiQuotes into GHCi. Then import Dutch or English note entry
with

import Heget.Input.Dutch

import Heqget.Input.English

Now you can create Heqet music values in Haskell by writing them enclosed
by “[music|” and “|]”, like so:

[music| c4 d8 e £f2 |]

2.2 Differences from Lilypond input

There are several differences between the Heqget note-input domain-specific lan-
guage and Lilypond input, for a variety of reasons, including philosophical differ-
ences, features Heqet provides which are not in Lilypond, features which would
be troublesome to implement in Heqet, and features which I simply haven’t
gotten around to yet.

e You can enter notes with any rational duration with the \d syntax, for
example c\d 4/5 to make a note with a duration of 4/5 of a whole note.
You can omit the denominator if it’s 1. This is currently the only way to
enter notes of the durations needed for a tuplet.

e You can also enter notes with any frequency you like by writing the pitch
as a number followed by hz, for instance [music| 234.01hz4. |]

e You can modify the pitch of a note with the command \cents followed
by a number, possibly negative. This is currently the only way to get a
quarter-tone pitch.

e The only languages you can currently use are Dutch and English.

e At the moment, slurs must be entered by putting a -(articulation on
every note but the last.

e You cannot enter clefs, keys, or time signatures. I might implement time
signatures, but Heqet will never support keys or clefs in note entry, since
these are matters of how music is presented to the musician, not funda-
mental aspects of the music itself.

e Lilypond is actually difficult to parse because there is no syntactic differ-
ence between a command like \fermata, which follows the note it applies
to, and one like \xNote, which proceeds its argument. In addition, many
Lilypond commands change the state of all music that follows it, but not
all do. Given the obvious usefulness of importing directly from Lilypond,

in the future I will probably write some sort of Scheme tool to run in
Lilypond and create a Heqet music value.

This means that if you want to include Lilypond commands, you must
specify their syntax. If a command follows its note, begins with a back-
slash, and contains only alphanumeric characters, then you can write it
as in Lilypond. If it follows its note but doesn’t meet these criteria, enter it
with \with and your desired command in a string: ¢4 \with "\\foo 1.7".
If you have a command that has a part that proceeds its music argument,
for instance the pair of \stopStaff and \startStaff to temporarily hide
the staff, then you must enter it as follows:

[music| c4 \command "\\stopStaff" "\\startStaff" { c d } e |]

Since many Lilypond commands take their music argument in braces,
with the closing brace being the only part that follows the music, there is
a shortcut:

[music| c4 \function "\\transpose c e" { cd } e |]

A Lilypond command is separately recorded on every note it’s applied
to. At the moment, no effort is made to combine notes with a certain
command into a single instance of that command with a long music ar-
gument upon rendering. This will be required for rendering octava marks
correctly, and may improve performance, so future versions of Heqet may
include a way to mark whether a command must, can, or shouldn’t be
combined.

A warning: although it is possible to insert arbitrary Lilypond code into a
Heqget music value, please take care, as rearranging the notes of a heavily-
tweaked piece of music might have unexpected effects, as Heqet currently
has no understanding of the meanings of Lilypond commands.

Currently, only absolute note entry is possible.

In Lilypond, you can enter regular notes or you can enter percussion notes
in drum mode. In Heqet, both kinds of notes are mixed. You must enter
percussion notes by proceeding each with \p, so \phh means a hi-hat note.

There is no way to manually specify beams, and never will be.

Repeats are not supported in note entry and probably never will be, as
they are matters of notation, not musical fundamentals, and it’s easy to
repeat a section of music using Haskell functions without resorting to
notation in the music-entry DSL.

3 More processing

To combine pieces of music in parallel or in sequence, use the functions parI
and seqI. A piece of music in Heqet exists at a specific time. seqI will move its
second argument to immediately follow its first, while parI simply squashes the
two segments of music together into one no matter what time they occur. To
change the time that a piece of music starts at, use the function startMusicAt,
which takes a rational starting time and a piece of music. For example, seqI is
defined as

seql m1 m2 = ml ‘parI‘ (startMusicAt (getEndTime ml) m2)

where getEndTime and its companion getStartTime do the obvious. If you
want to modify a section of music specified by its start or end time, you can
use the functions takeMusic, dropMusic, and sliceMusic, which take 1 or 2
rational points in time and give a lens which can be used to focus on that section
of music. To discard the other parts of the music, you can “view” the music
through the lens with the ~. operator, for instance opus ~. sliceMusic 0 100

4 Making your own note type

Say you want to play around with 19-tone equal temperament. Heqet currently
doesn’t have built-in support for notes other than 12-tone equally tempered
pitches, percussion, and lyrics, but you can still create your own type of pitch,
put it in a Music value (even mixed with other types of pitches) and render
it to Lilypond. You’'ll need to turn on the DeriveDataTypeable extension by
putting {-# LANGUAGE DeriveDataTypeable #-1} in your source file or typing
:set -XDeriveDataTypeable in GHCi. Now, import Data.Typeable. Then
define your new pitch type, deriving Show and Typeable. Now, Heqet defines a
data contractor called Ly which can take any argument that implements Show
and Typeable, as well as two Heqet classes, Renderable and Playable. Now
look at LyInstances.hs and the beginning of Output/Render.hs for example
instances and write your own.

class Renderable a where

renderInStaff :: (Note MultiPitchLy) -> a -> String
getMarkup :: a -> [String]
isDisruptive :: a -> Bool

class Playable a where
info :: a -> Maybe PlayInfo

data PlayInfo = PlayInfo {
_slurrable :: Bool
, _chordable :: Bool
, _pitchHeight :: Maybe Double
}

5 Example

polyPiano = [music]|
<< {c1}\\
{c’’8. ¢’’16 d°’4 e’ £7°} \\
{r4dr8g>’8bf’’8 r8 r4 } >»
c8 e g c’ e’ g) c’? e’ Kc?? ¢r>1 |]
& assignMeter m4_4
& superBasicSplit
& traverse.val.inst .~ Just Instruments.piano

This example demonstrates chords, polyphony, and automatic splitting of music
into two staves for piano.
More examples are in TestCases.hs.

A i nglb 7 _ “‘7_11:31 =
@
$ i | I - o ©
ANV4 | | | | v @
ryj ——
Piano .
é/): C—o Il_lp_lp - =

Music engraving by LilyPond 2.16.2—www lilypond.org

	Heqet for Euterpea Users
	Heqet for Lilypond Users
	Note input
	Differences from Lilypond input

	More processing
	Making your own note type
	Example

